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2
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Exergy Modeling to Compare Engineered Products to Biological Systems for 

Sustainable Design 

Richard D. Stokes, Jr.  

ABSTRACT 

 

An ambitious and novel approach to engineering design and sustainability has 

been taken to explore the potential of drawing parallels between mechanical and 

biological systems for the possible development of sustainable engineering design 

metrics using a thermodynamic model.  This approach looks to biology.  Natural 

selection has given biological beings and processes high exergetic efficiencies, even 

while being only 30-40% energy efficient on the cell level.  This energy inefficiency, 

resulting in a release of heat, can then be used to aid in driving other biochemical 

processes.  The Gibbs free energy becomes more negative proportionally with an increase 

in temperature, resulting in a more favorable reaction.  This effective use of waste heat 

from cell processes actually results in an increase in overall efficiency of an organism, 

around 50-60%. 

 

As in all systems the boundary defines the analysis.  An exergy analysis was 

conducted on a residential dishwashing machine in several boundary configurations in 
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order to develop an appropriate model.  Exergy serves as a tool for identifying and 

quantifying losses in the system so that future works can be aimed at reducing 

irreversibilities.  This model was then compared to data previously available regarding 

exergy within various processes of a biological cell.  In future work, it is this comparison, 

which can be used to develop metrics for use early in the design stage to more efficiently 

use available and sustainable resources.  There is a large difference between the two 

systems, with the dishwasher only having an effectiveness of 1.3%. 
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CHAPTER 1: INTRODUCTION 

 

 

 

As stated by the Brundtland Commission, sustainability is defined as “the 

development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs.”[1] With society increasingly moving toward 

a sustainable lifestyle, products and mechanical systems are in the process of being 

redesigned to better use materials and energy.  The issue that this transformation poses is: 

how do we design a product to have the same or better functionality while, at the same 

time, reducing material and energy wastes, without drastically increasing the cost?  The 

solution to this question is one engineers are working towards in terms of trade-offs and 

multiple objectives. 

 

1.1. Objective 

 

The purpose of this research is to explore the potential of drawing parallels 

between mechanical and biological systems for the possible development of sustainable 

engineering design metrics.  Of particular interest is how each system makes use of 

available resources to perform the desired functions and what the implications are for the 

efficient and effective use of those resources, including the degree of waste generation.  

Thermodynamic models will be used for comparisons between current, published 
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findings pertaining to cellular processes and a set of experimental data collected from a 

dishwasher.  Metrics serve as a way to quantify certain aspects of engineering design, 

something a simple set of principles or guidelines cannot do. 

 

1.2. Motivation 

 

Currently the mainstream form of process and product analysis is centered around 

the Life Cycle Analysis, LCA.  The life cycle of a product includes its cradle-to-grave 

resource use.  The purpose of the analysis is to examine the effects the product has on the 

environment from both an energy and resource perspective.  For example: How much 

energy and materials A, B, and C are required to make the product?, During its 

operational time, how much energy and resources, such as water, will it use?, Can the 

product be remanufactured or recycled?, How much energy will it take to process the 

product at end of life?, and What is this product’s overall impact on the environment? 

 

Scientists and engineers have turned to nature for design ideas and guidance all 

through recorded history.  Franco Lodato, a well known visionary and designer, having 

worked for DuPont, Gillette, and Motorola, has been using the influences of nature in his 

designs for his entire career.[2] 

 

For the purposes of this research, mammalian cells were selected to compare with 

the mechanical system.  Mammalian cells are considered to be relatively efficient 

machines, having efficiencies typically ranging between 30-40%. [3][4] The cell is able 

to operate with minimal waste since most byproducts are reused at some point, either 
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within the particular cell or transported and used in a different cell somewhere else within 

the organism.[3] 

 

The mechanical system used in this comparative study is a dishwasher.  A 

dishwasher was chosen because of its common place in households, its significant water 

and electrical energy usage, and very defined inputs and outputs.  The basic idea was 

chosen to investigate a widespread, easy to associate with system that was known to be 

ineffective in its use of water and energy. 

 

1.3. Scope 

 

In order to evaluate how well the dishwasher makes use of the resources (energy, 

water), a thermodynamic exergy model has been constructed. Exergy, or availability, is 

simple in concept, but presents difficulties in application.  As will be seen in later 

sections, exergy analyses are capable of highlighting places for improvement; however, 

they are not always able to provide guidance on how to make that improvement.  This 

model is then used to develop a quantifiable means of analyzing how effectively the 

dishwasher is capable of heating the water used in cleaning the dishes. 

 

The models associated with the cell are constructed from researched data.  This 

approach was taken in order to be able to draw relevant, supported conclusions from a 

biochemical field of study in a mechanical engineering setting. 
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This paper is focused on the comparison and contrast of these two relative 

models.  Conclusions can then be drawn based on energy and material use, effectiveness 

of use, and waste. 

 

1.4. Contributions 

 

The primary contribution of this research is to develop basic thermodynamic 

models for both the biological and mechanical systems and use that comparison, or 

analogy, to investigate the feasibility of identifying parameters suitable for sustainable 

engineering design metrics. 

 

1.5. Research Approach 

 

An extensive literature search was conducted to determine the current state of 

knowledge concerning the thermodynamic behavior of the biological cell, the availability 

of data for the life cycle analysis, exergy analysis of both the cell and the dishwasher, and 

the issues directed as sustainability principles for engineering design. An exergy model 

was then developed as presented in chapter three for use in the experimental testing.  

Chapters four and five will then respectively present the findings based on the 

experimental data and discuss these findings.  The thesis will then conclude with chapter 

six, the conclusion.  It is in this chapter that suggestions for future work will be made, 

and comment will be given regarding using the information presented in the thesis for 

future work in sustainable design.
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CHAPTER 2: BACKGROUND 

 

 

 

This chapter is presented in order to establish an understanding of terms and 

principles to be used in subsequent chapters.  The scope of this thesis is rooted in 

mechanical engineering principles; however, there will be information provided relevant 

to the biological aspect of the comparison. 

 

2.1. Sustainability 

 

The increased realization of the environmental and society impacts of material 

and energy utilization has led to an aroused awareness that measures must be taken to 

reduce waste and increase the recycling of spent materials.  This awareness has keyed the 

term “sustainability” and has made it a widespread term in modern developed society.  

Toolkits for sustainability are even being incorporated into popular design software, such 

as SolidWorks. 

 

As previously stated, sustainability is a broad term used to describe designing to 

decrease environmental impact both in the present and the future.  Another term that has 

arisen dealing with sustainability in a more technical way is “Green Engineering.”[5] 

This concept has led to an increase in engineers designing not just for performance, but 
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also with the environmental impact in mind.  They now need to consider all aspects of the 

product, including its material and energy use, as well as the material used in the 

construction of the product.  Anastas and Zimmerman have published their twelve 

principles of “Green Engineering.” They are: 

1. Designers need to strive to ensure that all material and energy inputs and outputs 

are as inherently nonhazardous as possible. 

2. It is better to prevent waste than to treat or clean up waste after it is formed. 

3. Separation and purification operations should be designed to minimize energy 

consumption and materials use. 

4. Products, processes, and systems should be designed to maximize mass, energy, 

space, and time efficiency. 

5. Products, processes, and systems should be “output pulled” rather than “input 

pushed” through the use of energy and materials. 

6. Embedded entropy and complexity must be viewed as an investment when 

making design choices on recycle, reuse, or beneficial disposition. 

7. Targeted durability, not immortality, should be a design goal. 

8. Design for unnecessary capacity or capability (e.g., “one size fits all”) solutions 

should be considered a design flaw. 

9. Material diversity in multicomponent products should be minimized to promote 

disassembly and value retention. 

10. Design of products, processes, and systems must include integration and 

interconnectivity with available energy and materials flows. 
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11. Products, processes, and systems should be designed for performance in a 

commercial “afterlife”. 

12. Material and energy inputs should be renewable rather than depleting. 

 

It is this sustainable approach that has led engineers to seek alternate design 

methods and metrics, in order to maximize their effective output, but at the same time 

decrease the environmental “footprint.”  Two methods discussed in this thesis include the 

“Life Cycle Assessment,” which looks at the environmental impact throughout the entire 

construction, operation and end-life of a product, and exergy, or how effective energy is 

used within a system.  These two approaches do not tell engineers how to design better; 

however, they do highlight areas in need of improvement. 

 

2.2. Life Cycle Assessment (LCA) 

 

The life cycle assessment “studies the environmental aspects and potential 

impacts throughout a product's life (i.e. cradle-to-grave) from raw material acquisition, 

throughout production, use, and disposal.”[6] Basically it looks at the entire life of a 

production from creation (“cradle”) to destruction and/or recycling (“grave”).  The key 

focuses are on energy and material utilization.  It is also seen that a Life Cycle 

Assessment (LCA) must also be evaluated on an individual basis.  The environmental 

impacts differ based on the capabilities of a society for processing the materials and 

supplying the energy required to manufacture, run, and process the end of life product. 
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When one is conducting an LCA of a product, several questions must be asked:  

What are the capabilities of the society in which this product is to be used?, What is the 

availability of the required materials, and what is the cost associated with processing and 

transporting them?, How much energy is required to construct, transport, operate, and 

dismantle/recycle the product?, How much raw material is to be used in the operation 

stage of the life of the product?, At the end of product's “life,”  what will happen to it?  

Will it be trashed and left in a landfill? Will it be left to naturally decompose?  Or will it 

be used as fuel for subsequent processes?[7] In some societies it may be more cost 

effective or environmentally sound to dispose of an item rather than attempting to recycle 

it. 

 

It is these concepts that have resulted in the keying of a term known as “eco-

efficiency.”  Eco-efficiency is a term used to quantify the ratio of economical impact to 

that of environmental impact.[8]  It is therefore used as a method of “quantifying the 

sustainability of products and processes.”[8] 

 

The increase in interest surrounding the LCA methodology has resulted in toolkits 

being developed to aid engineers in the design stage, such as the EIO-LCA toolkit from 

Carnegie Mellon.[9]  Europe also has guidelines they have named the European Eco-

Design Framework-Directive (2005/32/EC).[10]  The point of this directive is address the 

environmental impacts resulting from the production, use, and end of life. 
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2.3. Exergy 

 

The study of thermodynamics revolves around two main laws.  The first law 

simply states that energy can neither be created nor destroyed, but only transferred.  

Therefore, it is often referred as the “conservation of energy.”  The second law assigns a 

quality to energy in the form of entropy.  The quantifiable property of this quality is 

referred to as exergy, formally available energy.  Exergy is used to relate the maximum 

possible work that could theoretically be extracted from a process or substance with 

respect to defined environment conditions.  It enables engineers to “quantify the loss of 

the quality of the energy.”[11] Since exergy represents a loss, the laws of conservation do 

not apply.  These losses represent irreversibilites.  This property makes it possible to 

highlight areas in need of improvement within a system; however, it does not provide a 

guideline about how to accomplish this.  It is rather easy to see how these values relate to 

sustainability. 

Table 1: Energy vs. Exergy (Szargut et al.) 
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The total exergy of a substance is broken down into three main parts: thermal, 

kinetic, and potential; where the thermal portion is composed of both physical and 

chemical exergies.  Controlled electrical energy is considered to be all exergy because it 

is theoretically completely convertible to useful work. 

 

 
 

The exergetic efficiency, or second law effectiveness, is expressed similarly to 

that of energy efficiency as being the output divided by the input. 

 
 

It is easy to see with diminishing resources, that systems must be developed to 

more effectively use the available energy.  Typically, with an increase in energy 

efficiency, and increase in effectiveness is also achieved since less energy is typically lost 

in emissions and through internal consumption.[12]   

 

When developing sustainable methods, it is important to also incorporate energy 

loss and the loss of the quality of that energy.  In some instances the exergy is a more 

useful property than the energy because it shows the amount of energy that is useful, and 

can be used to possibly drive subsequent processes.  “This observation applies equally on 

the component level, the process level, and the life cycle level.”[12] So it is clear to see 

how exergy represents a promising tool in sustainable design. 
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An exergy analysis done on a domestic-scale solar water heater showed that the 

process is not very exergetic efficient because of the low quality of the energy of the 

exiting water.  The author of that study concluded that the highest loss of exergy occurred 

in the storage of the water.[13]  

 

Within the scope of thesis, exergy will be considered on a single 

component/process basis; however, there are mass applications that will now be 

discussed. 

 

2.3.1. Global Application of Exergy 

 

Several studies have been conducted on a mass residential-commercial 

demographic using exergy in their evaluation of the energy use.  The first study to be 

addressed is a projected study in the Turkish “residential-commercial” sector over a 

period of time from the years 2000 to 2020.  The study looks at the effect of heat 

generation and loss, conversion of fossil fuels to hydrocarbons, work utilization and 

production, and kinetic productions due to moving matter.  Data was collected from 

various sources regarding the current population in 2000, resulting in values of energy 

efficiency ranging from 55.60% to 65.54% from 2000 to 2020 respectively, while at the 

same time reporting exergetic efficiencies ranging only from 8.02% to 10.07%.[14]  The 

study investigated many aspects of the residential sector with emphasis on heating, both 

water and space, cooking and various other heat generating processes.  Basically the 

authors looked at the areas with the highest areas of exergy loss.  It is possible to see that 
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even by increasing the energy efficiency of a society by 10% can still yield a very low 

increase in exergetic efficiency, only around 2%. 

 

A project entitled the Annex 49 has taken a stride toward what they call a “Low 

Exergy” (LowEx) approach.  This method seeks to use the low quality “waste heat” 

which is usually considered a complete exergy loss in normal systems.[15]  For the most 

part, what they are trying to do is match the demand with the appropriate supply, instead 

of always supplying “high quality” energy. 

 

In 2007, a paper was published by A. Hepbasli et al. analyzing the energy and 

resource use within the Turkish residential-commercial sector.[16]  The study addressed 

items that create a significant amount of heat within an establishment.  They then looked 

at the energy vs. exergy efficiencies associated with these processes with respect to the 

energy or exergy of the fuel source.  The objective of the paper was to highlight key areas 

that needed improvement. 

 

These studies provide a mass picture of where energy is being used on the product 

level, but they are unable to give insight into what causes the losses.  When it comes to 

creating metrics for design, it is necessary to know the exact cause of the exergy loss.  

This is important because isolation allows for added consideration. This study does not 

aim at identifying all of the losses, but it does provide a means for quantifying them. 
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2.4. Current Exergy Models 

 

The idea of drawing comparisons between engineering concepts and biological 

systems is not a new one.  Engineers have been turning to nature for a long time for 

inspiration in design.  A recent publication relates information processing of computer-

based technologies with the information processing of biological systems.[17]  The 

comparison is made on a basis of information performance, measured in MIPS, to the 

exergy consumption, in Watts.  This data is collected from various computer systems and 

is then compared to the brain processing of various organisms.  It is concluded later on in 

the discussion of the paper that the processing power of mammalian brains is around 107 

MIPS/W, where the fastest current CPU's only operate around 100 MIPS/W.  The author 

continues on to compare the theoretical amount of energy that would be required to 

produce a processor with the same efficiency of a brain.  At current rates of increasing 

processor efficiencies, the theoretical processor would require 100 times less energy than 

if the processing power increased proportionally with exergy demand.  Because the 

author used a Carnot approach to evaluate exergy, their method is not applicable to this 

study. 

 

2.4.1. Cellular Biology 

 

Current methods of exergy calculation within living cells are poorly developed.  

The interactions at intracellular conditions are often overlooked, leading to a lack of 

acceptable second-law methodologies. 
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The cell is considered a stable, yet highly dynamic system where material and 

energy flows are constantly happening and changing based on demand.  Even with these 

constant interactions the cell is able to maintain a fairly consistent range of conditions, 

known as homeostasis.   

 

Current thermodynamic methods well suited for typical systematic processes are 

not adequate for analyzing processes within living cells.  The standard input-output 

approach can be applied to the cell as a whole; however, when it comes to investigating 

individual biochemical processes found within a cell, such as ATP synthesis, the 

intracellular conditions and interactions have to be considered.  At the cellular level, the 

effects of inertial and gravitational forces are greatly reduced and can be neglected in the 

calculation.  It is also safe to assume that changes in pressure and temperature are very 

small due to the homeostatic characteristic of the cell.  This leaves just the effects of 

chemical interactions for the exergy calculation.  Overall the quality of the exergy 

calculation will rely on the incorporation of as many intracellular interactions as possible.  

With the inability to understand the entire scope of every intracellular interaction, the best 

that can be done is incorporating as many interactions as are currently known. 

 

In recent years there has been an increasing utilization of exergy within the 

biological/cellular world.  A group at the Delft University of Technology in the 

Netherlands has published two papers within the past five years relating the concepts of 

exergy and the second law to processes within cells.  The initial publication entitled, 

“Thermodynamic analysis of the living cell: design of an exergy-based method,” the 

authors investigate the key aspects within the intracellular space that would contribute to 
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an exergy based calculation.[18]  To demonstrate their procedure, an exergy calculation 

was conducted for the energy carrying compound known as ATP, or adenosine 

triphosphate.  With this calculation they were able to demonstrate that previous measures 

of available energy quantification, such as Gibbs free energy, were inadequate and that 

the ATP compound actually had around twice the potential to do work than previously 

thought.  The following is a synopsis of the exergy formulation constructed by Lems et 

al.  

 

Gibbs free energy data is readily available for most biochemical compounds and 

can be used to calculate the exergy of a biochemical compound using the following 

equation. 

 
 

The first term on the right side of the equation contains the stoichiometric 

number, v, and exergy at chemical standard conditions of an element within the 

compound A.  This is a start, but it is not sufficient for modeling the conditions found 

within a cell, since the cell is seldom at or even close to biochemical standard conditions.  

The authors then go on to introduce several effects to the exergy that can be accurately 

quantified; these include: effects of dilution, acid and basic dissociation, ion-complex 

formation, ionic interactions, non-ionic interactions, and electrical potential.  Considering 

these interactions, results in a new equation for the exergy of ATP: 
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ATP is the chief molecule in transporting energy within the cell.  It is made of 

three phosphate groups attached to a ribose and adenine group.  Since the triphosphate 

group is the only portion of the molecule that is responsible for transferring energy, it is 

the only part of the molecule that will be considered for the exergy analysis. Because of 

this the exergy of the elements is evaluated based on the equation: 

 
 

Standard conditions are taken to be 101.3 kPa and 298.15 K. This yields an 

exergy of the elements to be: 

 
Similar calculations are done for the effect of Gibbs energy of formation, 

compound dillution, acid dissociation, magnesium-ion binding, and ionic interactions 

yielding an exergy of ATP of 299 kJ/mol.  In order to see how much useful energy is 

contained within each mole of ATP, the exergy calculated for ATP needs to be combined 

with the exergy of the products of the hydrolysis reaction.  The hydrolysis reaction is how 

the cell releases the energy stored within the ATP molecule. 

 
 

After subtracting the exergies of ADP, water, and inorganic phosphate from the 

299 kJ/mol calculated for ATP, the authors found that the reaction yielded 57 kJ/mol of 

useful work.  This differs from the previously accepted value of -30.5 kJ/mol as given by 

the Gibbs free energy of the reaction. The negative sign denotes a favorable reaction.  

This data shows that the Gibbs free energy is not an acceptable substitute for exergy, 

since many other local environmental factors within the cell affect the amount of useful 
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energy that is available to the surrounding systems.  It is only a valid at biochemical 

standard conditions, a state that cells are rarely at.  

 

In a more recent publication, the same group, S. Lems et al. (2009), investigated 

glucose and fatty-acid breakdown within the cell based on the exergy analysis previously 

described.[19]  This study, like the previous one are based off of material from Szargut et 

al., with the exception of liquid water being taken as the lowest state of hydrogen, instead 

of water vapor.  This assumption more adequately relates to biochemical conditions, 

establishing the exergy of water at standard temperature and pressure to be zero.  

 

In the first stage of glucose breakdown, glycolysis, one molecule of glucose is 

transformed into two molecules of pyruvic acid, two molecules of ATP, and 2 molecules 

of NADH. 

 
 

For consistent analysis, the authors took the exergy of the inorganic phosphate (P) 

to be zero and the exergy of the phosphate groups of ATP (PATP) to be 57kJ/mol, as 

previously stated.  With that stated, it can be seen in the following table, that 79% of the 

exergy available in glucose is transferred to pyruvic acid, 14% to the activated proton-

electron pairs within NADH, and 3.8% to the activated phosphate groups of ATP.  This 

shows that only 100kJ or 3.4% of the exergy is loss in this conversion process.  
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Table 2: Glycolysis (Lems et al., 2009) 

 

 

The next stage takes the pyruvic acid left over from glycolysis and degrades it to 

carbon dioxide and water in the mitochondria. 

 
 

The following table shows the exergy distribution of pyruvic acid into the proton-

electron pairs of NADH, FADH2, ATP, and CO2.  CO2 is taken to have little to no 

meaningful exergy since CO2 is the reference-state for carbon. 9% of the exergy 

contained within the pyruvic acid is lost during this phase. 

Table 3: Pyruvic Acid Degredation (Lems et al., 2009) 

 

The NADH and FADH2 from this stage are then oxidized to create the useful 

energy that will be used to create a large number of ATP in the electron transport chain.  

Basically, the oxidation relocates protons from the mitochondrial matrix to the cytosol.  

This process creates a larger concentration of protons outside of the mitochondria, which 
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can then be used to drive the ATPase, the molecular motor that assembles ATP 

molecules. 

 
 

The following table shows the oxidation reaction that results in the energy to be 

used in the following step, the proton gradient (104H
+
 (PMF)).  PMF is short for Proton 

Motive Force, the primary source of energy to drive the ATPase motor.  121 kJ or 5% of 

the exergy contained within the NADH and FADH molecules is lost.  

Table 4: Oxidation of NADH and FADH2 (Lems et al., 2009) 

 

 

The final process involved in glucose breakdown to ATP uses the proton gradient 

created in the previous process to drive the ATPase engine and convert inorganic 

phophate into the useful triphophate molecule. 

 
 

It can then be seen in the following table that a total of 705 kJ, 32%, of exergy is 

lost in this process.  
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Table 5: ATP Synthesis (Lems et al., 2009) 

 

 

The ATPase engine is considered reversible, so the loss observed in this process is 

considered to be due to the transport of the protons across the membrane.[19]  

 

With this information in hand, the overall breakdown of glucose can be 

summarized. 

 
 

An exergy balance of this process can be done by combining the information from 

the internal processes.  This is shown in the following table.  It can be seen that of the 

2955 KJ of available energy within glucose, 1707 kJ is converted into useful energy 

within the cell.  The remaining 1248 kJ is considered to be a loss.  This results in an 

exergetic efficiency of 58% for the breakdown of glucose.   
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Table 6: Overall Breakdown of Glucose into ATP (Lems et al., 2009) 

 

 
Figure 1: Exergy Flow Diagram of Glucose Breakdown into ATP (Lems et al., 2009) 

 

 

Figure 1 is referred to as an exergy flow diagram, and is a commonly used means 

of visually representing exergy. 

 

The authors also perform an exergy analysis on the breakdown of palmitic acid; 

however, that analysis will not be fully covered.  The overall reaction and breakdown of 

palmitic acid to CO2, H2O, and ATP results in an exergetic efficiency of 60%.  The 

reaction equation, exergy balance, and exergy flow diagram are as follows. 
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Table 7: Overall Breakdown of Palmitic Acid (Lems et al., 2009) 

 

 
Figure 2: Overall Breakdown of Palmitic Acid (Lems et al., 2009) 

 

 

It is important to note that these values are calculated at assumed, generalized 

conditions.  Depending upon the intracellular conditions losses could be either higher or 

lower.  It is currently not possible to account for all of the interactions within a cell. 

 

 

2.4.2. Dishwasher 

 

The dishwasher was chosen because of its excessive use of energy and water.  In 

the past few years dishwashers have been developed to use less of these two resources, 

but there is still room for improvement.  The dishwasher used in this study is a GE 
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Nautilus with power scrub wash system and quiet power sound package, model number 

GSD3230F01WW.  It is composed of a plastic shell/case and a timer controlled system.  

The system is also equipped with an array of buttons for choosing options like “pot 

scrubber,” “hi-temp wash,” and “heated dry.” 

 

Throughout the research process of this thesis, very little information was 

encountered directly relating an appropriate exergy analysis to the dishwashing process.  

The only actual analysis found is an incomplete one in that it is only looks at exergy in a 

strict heat transfer process from the fluid to the surrounding environment.  In order to 

calculate the effectiveness of a dishwasher, the author simply divides the Carnot factors 

associated with the needed heat, with that of the supplied heat.[20] 

 
 

This method does not take into account losses associated with the transport and heating of 

the water, two factors that must be addressed. 

 

2.4.3. ENERGY STAR 

 

One design metric that currently exists governing the operation of dishwashers is 

the ENERGY STAR criteria.  ENERGY STAR currently has a set of standards for both 

the energy and water use of dishwashers that are higher than the federal standards.  It 

states that for a “standard sized” dishwasher (greater than eight place settings and six 
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serving pieces) in order to warrant the ENERGY STAR approval it must be rated to use 

less than 324 kWh of electricity per year and less than 5.8 gallons of water per cycle. 

Additionally for a “compact sized” dishwasher (less than eight place settings and six 

serving pieces), less than 234 kWh/year and less than 4 gallons per cycle is allowed.  The 

current federal standards say that the standard dishwasher must use less than 355 

kWh/year and 6.5 gallons/cycle, and the compact dishwasher must use less than260 

kWh/year and 4.5 gallons.  ENERGY STAR recently (2009) raised their standards up to 

the aforementioned limits and plans to raise them again in 2011 to: standard 307 

kWh/year and 5.0 gallons per cycle; compact 222 kWh/year and 3.5 gallons/cycle.  

 

The previous metric was based on a quantity known as the “energy factor” (EF).  

It is expressed in cycles per kWh and is defined as follows, where M is the sum of the 

machine electrical energy per cycle and W is the water heating energy consumption per 

cycle. As can be seen, the previously used metric only set a standard for the energy 

consumption. 

 

 

2.4.4. Thermodynamic Efficiency and Effectiveness and Sustainable Engineering 

Design Metrics 

 

While the thermodynamic behavior of the cellular system and the mechanical 

system are founded on first and second law principles, the models and methods described 

in the previous sections have focused on different aspects to describe the system 
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performance.  It is necessary that direct comparisons of the resource use for these two 

systems be analyzed using both the exergy method and the LCA tool in order to establish 

common attributes that can serve to identify design metrics.  Extensive thermodynamic 

modeling of specific functions of each system is necessary to establish both the 

performance and the sustainability aspects of each. 
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CHAPTER 3: EXPERIMENTAL SETUP 

 

 

 

The focus of this chapter is to present the setup for the thermodynamic model of 

the dishwasher.  The overall setup will be discussed and the appropriate equations will be 

presented. 

 

3.1. Exergy Relations 

 

The exergy relations provided hereafter are derived from several sources, such as 

textbooks and other publications; however, to maintain consistency, the relations for 

closed systems provided by Szargut et al. [11] will be presented.  The sign convention 

used assumes that all inputs result in a positive value; consequently, all outputs from the 

system are represented by a negative value. 

 

3.1.1. Assumptions 

 

Before any calculations can be conducted, a few assumptions will need to be 

made regarding the system. The first consideration to be evaluated is the boundary and 

whether the system will be represented as closed or open.  At first glance, it would be 

easy to assume that the dishwasher would represent an open system, with water able to 
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freely flow across the boundary.  On the other hand, since the system neither expels nor 

receives any water during the actual “wash” cycle, the system is taken to be a closed 

control mass.  Another key assumption is to how the boundary handles heat loss.  As 

previously stated, thermocouples 7 and 8 are used to measure the heat transfer through 

the case.  These temperatures are taken to represent the entire case.  The exposed surface 

area of the case is also needed, but because of the complex geometry, an estimate is 

taken.  For calculation of the heat transfer rate, defined by Fourier's Law: 

 
 

The thermal conductivity of the case is taken to be that of ABS plastic.  This 

material assumption is made because actual data is unknown.  The front door is made of a 

metal; however, it is not to be considered because it contains insulation.  The bottom of 

the case is also considered to be adiabatic because of the inability to properly measure the 

temperature gradient across it. 

 

The last assumption concerns the state of the water within the system.  It was 

observed through measurement during the wash cycle, that several hundred grams of 

water are somehow lost.  Since the system is closed to the surroundings, the only 

explanation is that the water enters the 2-phase region, and there is liquid water and water 

vapor together, a quality exists and is defined: 

 
 

Since it is the entire wash cycle that is being looked at, the two important points 

to address are the beginning and ending conditions of the cycle.  This includes the total 
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power used during the cycle, the mass of water throughout the cycle, and beginning and 

ending temperatures of the appropriate thermocouples.  Also since the mass of water in 

the basin is at the same elevation and velocity as when the cycle started, changes in 

kinetic and potential energies are equal to zero.  The quality of electricity is considered to 

be all useful; therefore, the energy contained within the electricity is taken to be the 

exergy as well. 

 

3.1.2. Equations of Exergy 

 

In order to evaluate the change in exergy of the water throughout the cycle, 

properties need to be evaluated for the water at the begining and end of the cycle.  These 

properties include the internal energies and entropies at the two points; both are available 

from many different printed and electronic sources.  The following equation shows the 

exergy content of the water at a particular state. 

 
 

If state one is the start of the cycle and state two is the end, then the resulting 

properties and exergy at state two are shown by: 

 
 

The same mass is used in both states because the overall mass of the system does 

not change, control mass.  So, in order to see the change in available energy during the 

“wash” cycle the equations are combined resulting in the following: 
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This value is of great importance, since it shows the amount of energy effectively 

transferred from the electricity to the working fluid.  Another way of quantifying how 

well a system transfers energy is by evaluating its effectiveness or “second-law 

efficiency.”  The effectiveness is evaluated similarly to the way energy efficiency is.  It is 

a ratio of the output over the input.  In the case of the “wash cycle” the output is the 

change in availability of the water and the input is the provided electricity to the coil and 

pump. 

 
 

One way that an exergy analysis can highlight key losses within a system, is by 

looking at irreversibilities, or exergy losses.  Irreversibilities are unavoidable losses 

associated with the transfer of energy.  The exergy loss due to irreversibilities is 

represented by: 

 
 

Sigma represents the entropy generation due to the process. 

The following equation demonstrates irreversibilites caused by heat transfer. 

 

In addition, the irreversibility within a pump is expressed by: 
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Because of unknown conditions and constraints within the system, this 

irreversibility will not be evaluated.  Properties regarding the pump, such as outlet 

pressure, and efficiencies (both mechanical and fluid compression) cannot be addressed 

without destroying the testing equipment. 

 

3.2. Apparatus Setup 

 

The dishwasher is placed within a safety basin.  This is done to ensure that any 

leakage is captured, preventing damage to the laboratory space.  This basin-dishwasher 

combination is then place atop a digital scale.  The scale servers as a means to measure 

the amount of water contained within the system at any point during the operation. 

 

Electrical and water connections are then made.  A custom emergency kill switch 

has been wired in-line with the power cord before it is plugged into the Watts Up power 

meter.  The meter is connected to the wall socket.  The water inlet hose is connected 

using two segments of garden hose with an in-line volumetric flow meter connecting the 

two hoses.  This flow meter is a fail-safe for the scale.  It also serves as a means to ensure 

that no water enters the system randomly.  The hose is then connected to a hot water 

source through the use of a custom adapter.  The outlet hose is simply inserted into a five-

gallon bucket.  Because the dishwasher uses more than five gallons of water throughout 

its operation, this bucket will have to be emptied several times. 

 

In order to track the thermodynamic state of the dishwasher during operation, a 

series of eight thermocouples were attached to the system at various points. 
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1. Coil 

2. Bottom basin 

3. Inlet 

4. Exhaust 

5. Lower drawer 

6. Upper drawer 

7. Inner wall at top of case 

8. Outer wall at top of case 

 

 
Figure 3: Dishwasher Thermocouple Locations 
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Type T thermocouples were used because of their low full scale range, -200 to 

350 °C.  The coil at its hottest point reaches around 340 to 350 °C.  In order to acquire 

the data from these thermocouples, an NI BNC-2120 DAQ board was utilized in 

conjunction with LabView.  Because of this setup, a cold junction compensation, CJC, 

was able to be set manually for the thermocouples. 

 

The basin location serves as a means of representing the bulk working fluid 

condition, where the locations 1, 7, and 8 are key points of thermodynamic losses.  7 and 

8 are the inner and outer surface temperatures of the “thin-wall” medium where heat 

transfer occurs and is lost to the environment.  The coil temperature is measured because 

losses occur whenever energy is transferred, and in the case of the coil, a massive amount 

of energy is converted from an electrical potential to heat.  The number 5 and 6 

thermocouples on the two drawers serve strictly as a means to observe the temperature 

distribution within the case, ensuring that the system's enclosure can be modeled as a 

lump control mass.  They will also serve as the reference temperature for the analysis of 

the coil heating process.   

 

The dishwasher has several settings available for the user to select from, 

depending on the input and the user's preference.  On the front panel, there are toggle 

buttons that allow for the system to operate for a larger than normal load, increased wash 

temperature, and heat-assisted drying.  For the purpose of this experiment, the two 

extremes will be tested to provide an overall range of operation. 
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There are also many different segments which make up the full run-time of the 

dishwasher.  They begin with a heated pre-soak, followed by a pre-wash; before being 

washed rinsed and dried.  Since the underlying usage of a dishwasher is to clean or wash 

dishes, the longest “wash” cycle was used.  During this cycle, the dishwasher neither 

drains nor fills, and the motor and heating coil run at a consistent rate. 

 

Measurements of temperature and power were taken at two-second intervals, and 

the mass and water meter was monitored at a five-minute increment.  The two seconds 

was chosen based on a spreadsheet provided with the power meter for measuring a 

process of around 120 minutes.  This interval was also applied to the thermocouple 

measurement in order to be able to easily pair the data of the two systems after the 

collection phase.  The five-minute interval was more for convenience, but also because 

throughout the entire run, at only one point is there less than five minutes between 

draining events. 



www.manaraa.com

34 

 

 

 

CHAPTER 4: EXPERIMENTAL RESULTS 

 

 

The following results are presented from experimental data as introduced in the 

preceding sections.  They are not meant to model every type/model of dishwasher, but to 

provide a rough estimation of the energy and water usage of a sample dishwasher.  These 

calculations are based on the exergy equations stated in an earlier chapter.  The properties 

used are taken from an online flash program.[21] Results from this calculator are 

consistent with other printed tables.  The thermal conductivity for the walls of the 

dishwasher is assumed to be 0.17 W/m-K, that of ABS plastic. [22] 

 

4.1. High Load Settings 

 

The high load setting was used to gain a reference point for the maximum use of 

energy and water during the wash cycle.  The dishwasher was allowed to run through its 

entire dial timer with settings of: pots and pans, hi-temperature wash, and heated dry.  

Temperatures were measured at the locations indicated in Figure 3 and the control mass 

was tracked. 

 

Water content of the system during the “wash” cycle was seen to be fairly 

consistent through testings, only varying a few hundred grams.  It was also noticed that 
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during the cycle, a noticeable amount of mass, 0.1-0.2 kg was seen to be “lost.”  The 

initial assumption was that there was a leak in the system; however, after further 

investigation, no leaks were observed.  Further investigations indicated that the water 

within the dishwasher is able to go from a saturated liquid into its two-phase region 

during the washing sequence.  It also important to point out that the temperature 

distribution within the system is fairly uniform, at least during the wash cycle, as 

indicated by the temperature profiles in the upper and lower trays.  

 

Figure 4: Upper Drawer vs. Lower Drawer (high setting) 
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The following is a graphical representation of the water use in kilograms.  

 

Figure 5: Water Consumption (high setting) 

 

The system fills and drains nine times; however, during the “wash” cycle, the 

system fills and empties only once.  This allows the analysis to be conducted as if the 

system were in an initial and final state.  The initial state is taken at the point when all of 

the water has entered the system and the coil is energized, and the final concludes as the 

drain valve opens and the coil is shut off.  It is the temperatures at these two points that is 

used in the exergy calculations. 
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Figure 6: Power Usage (high setting) 

 

Power has been monitored at a two-second interval using the Watts Up meter.  It 

is clear that the highest power consumption occurs when the motor and coil are both 

energized.  Throughout the majority of the cycle, with the exception of the drying 

process, the motor and coil are used in tandem.  During the drying process, only the coil 

is consuming electricity.  The part of this graph that is important for the model is the 

center longer portion, representative of the wash cycle.  The cycle lasts approximately 

thirty five minutes.  With that in mind the total work applied to the system can be 

calculated from the area under that portion of the curve.  More simply put, the power 

multiplied with the running time gives the total energy transferred during that portion of 

the wash. 
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Table 8: Properties and Preliminary Calculations (high setting) 

 

After applying the appropriate equation, the result for the change in exergy or 

availability of the water during the wash cycle comes to 15.58 kJ.  This number means 

that the work potential of the water has been increased by 15.58 kJ; however, for this to 

take place, 1298.94 kJ of electrical work must be applied to the system.  Energy is 

transferred to the working fluid using both heating and imparting motion.  The change in 

exergy captures how effectively this is done.  Since the effectiveness is crudely defined 

as what is achieved over what is sacrificed, an effectiveness of 1.20% is achieved.  The 

discussion will present the significance of the effectiveness, and show how it can be used 

for improving design.  

 

With it being shown that such a small amount of exergy is effectively transferred 

to the working fluid, it is a reasonable assumption that since the cycle is dynamic and not 

at a steady state the water actually does accept a higher percentage of the supplied power.  

However, this exergy is then transferred from the water to the surroundings or internal 
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components.  This transfer is through both direct heat transfer, and transfer by impact and 

other kinetic effects of the water spraying within the system, transferring energy to the 

case and internal racks.  In order to determine the energy associated with imparting 

motion, a first-law analysis was conducted to show that 631. 32 kJ of energy is 

unaccounted for in the calculations.  This may be a significant part of the cycle, as it may 

be directly attributed to the function of the dishwasher in the form of moving water.  It 

was unaccounted for because in order to measure the parameters needed the system 

would need to be dismantled, on operation that could have been destructive.  In order to 

know information about the pump, pressures need to be measured at both the inlet and 

outlet of it.  The inlet is simple enough, resulting from a gravitational potential of the 

water lying at the bottom of the system; however, there was not any nondestructive way 

to measure the pressure coming out of the pump.  

 

Irreversibilities occur whenever energy is transferred.  They represent a loss of 

potential for that transferred energy to do useful work.  The irreversibilities associated 

with various heat transfer events within the system can be seen in the following table. 

Table 9: Irreversibilites (high setting) 

 



www.manaraa.com

40 

 

 The following shows how as the wash cycle progresses and as water is heated, the 

irreversibility is decreased.  This is due to the difference in temperature between the coil 

and water being reduced. 

 

 
Figure 7: Irreversibility of Coil Heating (high setting) 

 

When looking at the loss associated with simply raising the temperature of the 

system, with the same heat loss to the surroundings, 640.40 kJ is lost.  This is an 

unavoidable loss resulting from the change of state of the water and heat transfer.  It 

provides that the maximum effectiveness that can be achieved through the change of state 

of the water is 50.7% with 1298.939 kJ of electricity supplied. 
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The heating from the coil contributed a large part to the overall measured 

irreversibility of the process.   25.94 kJ of exergy is lost in the process of heating the 

water during the wash cycle.  After the water is heated an additional 1.15 kJ is lost due to 

the effects of conduction.  These two irreversibilities, along with the irreversibility of the 

water changing state make up the gross loss of availability within the system, totaling 

667.48 kJ.  This means that there is 615.88 kJ of exergy that is unaccounted for.  This can 

be attributed to the loss caused by the water molecules impacting the internals of the 

dishwasher, imparting motion to the water, and losses within the motor and pump 

assembly.   

 

By summing the irreversibilites and taking into account that the exergy 

transferred to and carried away by the water, it is possible to see the effect of other 

interactions on the system that either were not or could not be measured such as the pump 

performance and kinetic losses due to impacts within the system.  During the washing 

cycle, 615.88 kJ of exergy from the electrical input is unaccounted for. 

 

4.2. Low Load Settings 

 

These settings consisted of a full dial timer; however, the optional settings were 

set to a normal cycle, hi-temperature wash off, and heated dry off.  The experimentation 

was conducted in the same way as in the high load configuration and the same 

assumptions were applied.  
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As with the high load settings, the low variant was very consistent with respect to 

the amount of water used during “wash” cycle.  It should also be noted that even without 

the heated wash, a similar amount of water was converted to vapor during the process.  

When dealing with the differences between the high and low settings, the first thing that 

should be examined is the difference in water usage throughout the entire run of the 

dishwasher.   

 

Figure 8: Water Consumption (low setting) 

 

The low setting only has eight fills and drains, compared to the nine at the high 

setting.  The missing drain/fill sequence occurs during the pre-wash segment of the 

overall cycle; therefore, for the purposes of this model, it does not play a significant role.  
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Regardless, it should be noted that the amount of water taken into the system at any one 

time does not change, only that the system uses the same water for a longer period of 

time during that pre-wash sequence. 

 

 

Figure 9: Power Consumption (low setting) 

 

The energy input into the system during the wash cycle at the low setting 

appeared to be the same as the high setting with the exception of one spike during the 

“pre wash” phase around 2000 seconds, as seen in Figure 8 (compared with Figure 5).  

Similarly to before, the water gained 16.78 kJ of availability, an effectiveness of 1.3%.  
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Of the 1276.33 kJ of energy/exergy supplied to the system by the electricity, 335.6 kJ of 

energy and 321.32 kJ of exergy is unaccounted for.  The minimal loss for this 

configuration, assuming only the change of state of the water and heat loss, is 913.95 kJ.  

This results in a maximum theoretical effectiveness of 28.4% in order to just raise the 

temperature of the fluid. 

 

Irreversibilities were also very similar, as would be predicted since the cycle 

seemed to be the same as before.  The dominant avoidable loss was in the heat transfer 

from the coil to the fluid, at 23.23 kJ.  The irreversibility caused by the heat transfer from 

the system to the surroundings was 1.06 kJ, similar when compared to 1.15 kJ in the high 

setting.  Also when summed, over all components of this cycle, 321.32 kJ of availability 

is unaccounted for. 

Table 10: Properties and Preliminary Calculations (low setting) 
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Table 11: Irreversibilities (low setting) 

 
 

 

4.3. Comparison 

 

The dishwasher's entire run is best modeled as an open system with mass transfer 

across the boundaries, but for any particular segment can be considered a closed system 

with the intake and exhaust solenoids closed.  The wash cycle was examined because it is 

the part of the entire run that is meant to accomplish the overall design requirement of the 

dishwasher; to clean dishes.  Detergent was not used in order to provide a controlled 

thermodynamic system that could be observed and analyzed with ease.  The cycle is also 

a transient one, since equilibrium is never reached within the allotted time. 

 

As can be seen from the previous presentation of results for the two setups, high 

HLO) and low (LLO), used to show the range of operation during the wash cycle, very 

few differences are seen between the two configurations.  The key difference between the 

two setups s the amount of water used.  The high setting using 14.9 gallons and the low 

setting used 12.8 gallons, a difference 2.1 gallons.  Overall energy usage is also similar, 

except that the drying stage is not used during LLO.  Even with the high temperature 
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wash and dry off during the LLO, the dishwasher used almost the exact same amount of 

energy as in the high setup.  

 

One of the preliminary tests was run with the heating coil physically disconnected 

from the system, with the other parameters set for the LLO cycle.  While analysis of this 

test data identified that there was a problem with the cold junction compensation, CJC, so 

that the temperature profiles were too low, the trend is water temperatures during the 

overall process was established.  From this profile that is shown in figure 10, it can be 

demonstrated that the temperature of the fluid did not significantly drop during the wash 

cycle.  The problem with the cold junction compensation was corrected for all further 

testing.   

 

One of the preliminary tests that were run involved the same setup as the LLO 

with the addition of removing the heating coil from the system.  It was removed by 

disconnecting the leads used to energize it.  Temperature profiles were taken, and it was 

at this time that two notable observations were made.  The first involved the actual setup.  

The cold junction compensation, CJC, was not correctly set so the temperature readings 

were too low.  The CJC was later corrected using appropriate techniques.  The second 

observation was a trend.  Throughout the overall process the working fluid did not lose 

much temperature as can be seen by the following figure. 
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Figure 10: Temperature Profile (no coil) 

The time between roughly 2500 and 4500 seconds represents the “wash” cycle.  It can be 

seen that just moving the fluid around within the case is sufficient enough to hold the 

water at its inlet temperature.  This observance raises a few questions, mostly in part 

because the coil during HLO and LLO setups did not raise the water to a steady state 

temperature, but simply just raised the temperature.   What is the purpose of the heating 

coil being on during the washing cycle?  If it is meant to hold the fluid at a certain 

temperature, then it would be logical that the fluid be heated before entering so that less 

energy was required over the cycle.  Unfortunately, because the CJC needed correction 

and the temperatures were too low, an appropriate exergy analysis was unable to be 

conducted.
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CHAPTER 5: DISCUSSION 

 

 

 

A second law analysis serves as a means to evaluate how well a system is using a 

given amount of energy.  This effectiveness provides a quantifiable way of representing 

quality.  It is a tool for minimizing waste in both materials and energy, a common goal 

for sustainable design.  Efficiencies were evaluated for a dishwasher and extracted from 

previously published work for a cell in order to provide a reasonable thermodynamic 

comparison.  Exergy losses were also calculated for the dishwasher in order to provide a 

means for proposing improvements. 

 

Performing an exergy analysis is presented to be a simple endeavor; however, 

complexity can easily add to the difficulty.  As was seen in chapter 2, the exergy analysis 

within the cell had to take many internal interactions into consideration.  Difficulty also 

arises when a comparison is made between the two systems. Interactions such as the ion 

concentration and dilution play a much larger role respectively at the cellular level than 

that at the dishwasher level.  As engineers approach micro and nano systems, interactions 

like these start having an effect.  Because of this, approaches need to be taken into 

evaluating those effects so that exergy analyses can be conducted on that respective scale.  

There were also effects that were unobserved in the model of the dishwasher.  In the 

HLO configuration, 631.2 kJ of energy and 615.88 kJ of exergy are unaccounted for.  
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Also, in the LLO configuration, 335.6 kJ of energy and 321.32 kJ of exergy are 

unaccounted for.  Part of the reasoning behind this is the fact that the motor-pump 

assembly was not able to be addressed, and another factor could have been more heat loss 

through the front and bottom of the case.  This additional heat loss is not expected to have 

contributed much to the overall loss because of how low the irreversibility was for the 

sides, back, and top of the case.  Obviously the effect of other interactions within the 

dishwashing system had a significant role in the effective use of energy. 

 

5.1. Dishwasher Model 

 

The main function of a dishwasher is to clean dishes; however, with no definitive 

standard for what a clean dish is, evaluating the true effectiveness is difficult.  For that 

reason it was modeled as a basic thermodynamic system that is responsible for 

transferring energy from electricity to a fluid (water) in the form of kinetic motion and 

heat.  

 

The wash cycle was modeled as a closed control mass with heat transfer to the 

surroundings.  In the complete sequence of events, this is the interim between two flow 

stages, when the water enters and later when the water exits, and makes up only a portion 

of the entire running cycle.  Within the assumptions made, a second law thermodynamic 

model was applied to the wash cycle of the dishwasher in order to evaluate how 

effectively the system utilizes the availability of the energy it is provided.  
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Reviewing the findings, the effectiveness of heating the water was small, just over 

1%.  It was also shown that this low effectiveness resulted from three major contributors: 

heat transfer to the fluid, heat transfer from the fluid to the surroundings, and the motion 

of the fluid molecules being sprayed about and impacting the internals.  With the large 

percentage of exergy unaccounted for, other irreversibilities were most likely present as 

well. 

 

5.2. Cell Model 

 

The main function of one of the processes within the cell is to produce the 

molecule ATP as mentioned in the references in the background section.  The cell creates 

this molecule through a series of biochemical reactions.  Ultimately, it takes the energy 

from several sources, glucose, oxygen, and reused inorganic phosphate, and converts it to 

molecules of ATP, water, and carbon dioxide; the latter two having very low availability 

content. 

 

Within the cell there are a number of complex interactions, each having an impact 

upon how the energy is transferred.  While the cell as a whole is a very complex open 

system, with materials constantly being transported across the boundaries, it can be 

modeled as a closed system at a given spatial and temporal conditions.  As with the 

dishwasher, all interactions are time dependent 

 

During the generation of ATP from glucose, 58% of the availability is effectively 

transferred.[19]  Also, the breakdown of palmitic acid into ATP is accomplished with an 
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effectiveness of 60%.  The irriversibilities within the cell arise from the aforementioned 

“complex interactions.”  The cell is able to undergo these conversions without a massive 

drop in availability.  Not mentioned in the presented references, but a factor nonetheless, 

is that heat is released by the reactions.  It is this “waste heat” that is responsible for 

maintaining internal temperatures.  Also since reaction rates are temperature dependent, 

this would most likely have some effect on the effectiveness of ATP generation.  Because 

the temperature within the system is maintained at a near isothermal condition, 

irreversibilities due to heat transfer are low. 

 

5.3. Cell vs. Dishwasher 

 

It is important to investigate the exergy efficiencies associated with the respective 

systems, since these values serve as a normalized value which is able to be compared.  

The processes within the cell addressed within this thesis, are able to achieve a much 

higher overall effectiveness through a larger number of energy transformation events.  

This is compared to the dishwasher having a very low effectiveness, when it only 

undergoes a handful of energy transformations.  It converts energy from electricity to 

heating and kinetic energy of the water.  

 

While energy transformations and the use of water are common to the two 

systems detailed comparisons of the parallels between the two are difficult to undertake.  

However, some general comparisons can provide preliminary insights for future studies 

in the use of biology as a tool for engineering design.  A cell has pumps, material and 
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energy transfers, and is able to exist with a solid, yet permeable boundary with the 

surroundings. 

 

Table 12: Dishwasher vs. Cell 

 
 

 

The cell operates on an as-needed basis based on the materials available and the 

temperature at which the materials are located, but the dishwasher uses a pre-determined 

set standard regardless of requirements.  Regulatory proteins within the cell are able to 

sense the current conditions and requirements of the cell and act accordingly as either an 

inhibitor or catalyst.  The dishwasher operates on a fixed cycle based upon time.  

 

Heating the water causes a significant exergy loss, so reducing the need for the 

water to be heated would significantly reduce the irreversibility and required energy.  As 

the change in temperature approaches zero, so does the loss in availability.  Reducing the 

heat transferred to the surroundings would have a similar effect of reducing the loss in 

exergy, although the loss due to heat transfer to the surroundings is on the order of three 

magnitudes less than in the actual heating.  

 

Recent models of dishwashers have taken these issues into consideration and 

newly revised standards have been placed on the systems.  ENERGY STAR serves as a 
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standard for water and energy use for many appliances, including dishwashers.  

Manufacturers, such as Bosch, have placed various sensors within the system in order to 

determine the amount of water/heat needed and adjust accordingly.  Some sensors are 

even capable of sensing the soil level of the water and adjusting the cycle length if the 

dishes become clean before the prescribed time.  Heating has also seen a change.  Some 

units are capable of heating the water in-line rather than by placing a coil in the basin, 

others are able to use a heat exchanger approach and use the waste heat from the previous 

cycle to heat a reservoir of water to be used in the next cycle.  These methods reduce total 

energy consumption and reduce the change in temperature, both resulting in increased 

exergy efficiencies.  

 

According to a review on “new Bosch dishwashers,” Bosch has added multiple 

means for reducing both energy and water usage.[23]  “EcoSense” is a system that uses a 

sensor to determine the soil level of the wash water and automatically adjusts subsequent 

water usage.  A second feature is named “Eco Action” and is capable of reducing the 

water temperature and extending the wash time, resulting in less energy usage.  Means of 

heating have also been changed through the use of two different kinds of heating.  The 

first is a “Flow-Through Water Heater” which is responsible for heating incoming water 

through direct contact with the element, resulting in faster, more efficient heating.  The 

second heater is a “Concealed Heating Element” and is used to maintain and/or control 

the temperature during the cycles.  The system used in the model utilized an elevated 

heating coil at the bottom of the basin, relying on the sprayed water hitting it in order for 

direct heat transfer to occur.  There is also mention of the possible use of a heat 

exchanger.  The exchanger houses a volume of water for the next fill and uses the waste 
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heat from the previous cycle running to heat the reservoir.  Drying was not addressed in 

the scope of this model, but it is to be noted that the system used in the model attempts to 

dry the dishes by raising the temperature of the heating coil up to around 340-350 °C.  It 

can be seen by the temperature profiles in Figure 3 that this high coil temperature results 

in a maximum temperature of 58-65 ° C at the locations of the upper and lower drawers.  

The Bosch system utilizes the fact that the case is constructed from metal to create a 

condensation effect, pulling the water from within the system to the walls of the case.  

Another method is the use of zeolith minerals to extract moisture from the system.  Each 

of these modifications can be related back to the on-demand behavior of the biological 

cell, where actions are responses to information sensed by the regulatory proteins. 

 

5.4. Design Potential 

 

The use of exergy relationships presents a useful tool for engineering design.  By 

designing for an effective use of energy and materials, efficiency will surely follow.  It 

provides a means of quantifying the losses of useful energy and the effective use of the 

available energy.  Engineers have been designing for years through biomimicry, by 

looking to nature for inspiration.  The cell is a dynamic machine that has many 

components operating in unison for the purpose of fulfilling the operational function of 

the cell.  It is able to do this with minimal waste of available energy and materials.  The 

molecules of ADP and inorganic phosphate are continuously being recycled through the 

ATP synthesis and hydrolysis reactions.  A particular type of cell or organism may 
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provide specific insights into where functionality and performance can be improved for 

an engineering design by mimicking the related effectiveness of the cell components. 

While aspects of sustainability have recently been incorporated into design 

software such as SolidWorks; this tool only addresses the amount of use and not the 

effectiveness of the use of resources.  If 1000 kJ of energy is 100% efficiently used to 

heat a reservoir of water through some change in temperature, the end result is still a loss 

in work potential of that water.  In other words, the second law of thermodynamics 

establishes that the energy provided to heat the water could never be achieved by using 

the water to drive a generator or some other device.  By minimizing these wastes, more 

can be accomplished with a set amount of energy.  When applying the “Twelve 

Principles of Green Engineering,” this work demonstrates that Principles six and twelve 

can be addressed using an exergy approach.  As previously stated, whenever energy is 

transferred an amount of available energy is lost.  The can be viewed, like Principle six, 

as an entropy investment.  Principle twelve states that materials and energy should not be 

depleted; therefore, the use of these resources should be optimized to maximize their 

effectiveness. 

By using the LCA methods previously discussed in chapter two, along with the 

appropriate exergy relations, a full evaluation of the product can be made.  The LCA 

analysis identifies material and energy use throughout the life cycle of the product, and 

the exergy relationships evaluate how effectively the energy and materials are used.  The 

key to creating appropriate design metrics is to combine these two methods into a readily 

determined term or guideline, like the previously used Energy Factor, that can be 

incorporated into design methodologies and software tools.
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5.5. Future Works 

 

With the ultimate goal of this work resulting in design metrics, how would the 

information presented here be of use in achieving this goal?  The answer is: currently it 

cannot be directly related.  In order for engineers to use the information known about a 

cell to better design products, a closer look within the systems of a cell must be made.  It 

is still necessary to investigate how the cell converts energy to achieve the exergy 

efficiencies it does.  

 

Design metrics serve as guidelines for engineers to follow during the design 

process of a product so that they can achieve the desired result within a particular range 

of acceptable values.  The dishwasher is an example where a design metric for water 

heating could be used.  By having a metric designating that for water heating a process 

must have an effectiveness of at least X amount, or that the process can only have an 

acceptable irreversibility of X, a large portion of the loss in availability can be eliminated 

or at least alleviated.  

 

More appropriate comparisons are possible by considering systems within a cell 

and finding their relative counterpart in the macroscopic.  Molecular motors such as 

kinesin and myosin would be comparable to systems in the macro that relate to motion 

from winches and vehicles.  The protein pumps that transfer materials across the 

membranes of the cell also serve as another point of comparison.  The entire ATP 

generation as addressed in this thesis could also be related to power generation plants.   
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Regardless of the comparison, the cell serves as significant source for possibilities in 

improving energy and material utilization.
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CHAPTER 6: CONCLUSION 

 

The model presented within this thesis provides a foundation for future works for 

creating design metrics based on comparisons between biological systems and 

mechanical systems with exergy serving as the link.  The experimentation revealed that 

there are many losses of available energy found within a dishwasher, resulting in very 

low effectivenesses.  Heating water contributes a significant loss, as does raising the 

temperature of a mass of water.  Further study of the unaccounted losses could show 

areas of the system, besides the heating of water, that contribute to the overall low 

effectiveness of the system.  

 

When compared to the biological cell, the cell showed higher effectivenesses in 

the conversion of glucose and palmitic acid to ATP.  The goal for future studies is to 

harness this observation and be able to appropriately parallel it with a mechanical system.  

If engineers are able to mimic these results at the macro level, then the result will be 

increased sustainability of resources and energy in a society that is steadily increasing its 

demand.  

 

 Strides are currently being taken both in industry and through government 

agencies to promote sustainability.  In industry, designers are focusing on environmental 
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impacts through LCA and agencies such as the EPA are promoting standards such as 

ENERGY STAR to reduce energy and material waste in dishwashers.  Currently there are 

no regulations in place in the US such as the café standards imposed on the automotive 

industry.  By combining these technologies and standards with LCA analyses and exergy 

metrics, not only will less energy and material be used, but the energy and materials that 

are used will be used more effectively. 
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Appendix 1: Experimental Setup Photos 

 

Figure 11: Overall Setup (side view) 
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Appendix 1 (Continued) 

 

Figure 12: Overall Setup (front view) 
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Appendix 1 (Continued) 

 

Figure 13: DAQ with Thermocouples Connected
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Appendix 1 (Continued) 

 

Figure 14: Internal View with Thermocouples 



www.manaraa.com

68 

 

Appendix 1 (Continued) 

 

Figure 15: Labview Block Diagram 
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Appendix 1 (Continued) 

 

Figure 16: In-Line Flow Meter 

 

 

Figure 17: Watts Up? Power Meter
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Appendix 2: Sample Data Set 

 

Table 13: Excerpt Sample Data Set (high setting) 

 

Table 14: Water Usage Sample (high setting) 
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Appendix 3: Sample Calculations 
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Appendix 3 (Continued) 
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Appendix 3 (Continued) 
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